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CHAPTER 13 
 

SOLUTIONS TO PROBLEMS 
 
13.1 Without changes in the averages of any explanatory variables, the average fertility rate fell 
by .545 between 1972 and 1984; this is simply the coefficient on y84.  To account for the 
increase in average education levels, we obtain an additional effect:  –.128(13.3 – 12.2) ≈ –.141.  
So the drop in average fertility if the average education level increased by 1.1 is .545 + .141 = 
.686, or roughly two-thirds of a child per woman. 
 
13.3 We do not have repeated observations on the same cross-sectional units in each time period, 
and so it makes no sense to look for pairs to difference.  For example, in Example 13.1, it is very 
unlikely that the same woman appears in more than one year, as new random samples are 
obtained in each year.  In Example 13.3, some houses may appear in the sample for both 1978 
and 1981, but the overlap is usually too small to do a true panel data analysis. 
 
13.5 No, we cannot include age as an explanatory variable in the original model.  Each person in 
the panel data set is exactly two years older on January 31, 1992 than on January 31, 1990.  This 
means that ∆agei = 2 for all i.  But the equation we would estimate is of the form 
 

Δsavingi  =  δ0 + β1Δagei + …, 
 

where δ0 is the coefficient the year dummy for 1992 in the original model.  As we know, when 
we have an intercept in the model we cannot include an explanatory variable that is constant 
across i; this violates Assumption MLR.3.  Intuitively, since age changes by the same amount for 
everyone, we cannot distinguish the effect of age from the aggregate time effect. 
 
13.7  (i) It is not surprising that the coefficient on the interaction term changes little when 
afchnge is dropped from the equation because the coefficient on afchnge in (3.12) is only .0077 
(and its t statistic is very small).  The increase from .191 to .198 is easily explained by sampling 
error. 
 
 (ii) If highearn is dropped from the equation [so that 1 0β =  in (3.10)], then we are assuming 
that, prior to the change in policy, there is no difference in average duration between high earners 
and low earners.  But the very large (.256), highly statistically significant estimate on highearn in 
(3.12) shows this presumption to be false.  Prior to the policy change, the high earning group 
spent about 29.2% [ exp(.256) 1 .292− ≈  ] longer on unemployment compensation than the low 
earning group. By dropping highearn from the regression, we attribute to the policy change the 
difference between the two groups that would be observed without any intervention. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C13.1 (i) The F statistic (with 4 and 1,111 df) is about 1.16 and p-value ≈ .328, which shows 
that the living environment variables are jointly insignificant. 
 
 (ii) The F statistic (with 3 and 1,111 df) is about 3.01 and p-value ≈ .029, and so the region 
dummy variables are jointly significant at the 5% level. 
 
 (iii) After obtaining the OLS residuals, û , from estimating the model in Table 13.1, we run 
the regression 2û  on y74, y76, …,  y84 using all 1,129 observations.  The null hypothesis of 
homoskedasticity is H0: γ1 = 0, γ2 = 0, … , γ6 = 0.  So we just use the usual F statistic for joint 
significance of the year dummies.  The R-squared is about .0153 and F ≈ 2.90; with 6 and 1,122 
df, the p-value is about .0082.  So there is evidence of heteroskedasticity that is a function of 
time at the 1% significance level.  This suggests that, at a minimum, we should compute 
heteroskedasticity-robust standard errors, t statistics, and F statistics.  We could also use 
weighted least squares (although the form of heteroskedasticity used here may not be sufficient; 
it does not depend on educ, age, and so on). 
 
 (iv) Adding y74 ⋅ educ, … , y84 ⋅ educ allows the relationship between fertility and education 
to be different in each year; remember, the coefficient on the interaction gets added to the 
coefficient on educ to get the slope for the appropriate year. When these interaction terms are 
added to the equation, R2 ≈ .137.  The F statistic for joint significance (with 6 and 1,105 df) is 
about 1.48 with p-value ≈ .18.  Thus, the interactions are not jointly significant at even the 10% 
level.  This is a bit misleading, however.  An abbreviated equation (which just shows the 
coefficients on the terms involving educ) is 
 

nkids  = −8.48 − .023 educ + …  − .056 y74 ⋅ educ − .092 y76 ⋅ educ  
  (3.13)  (.054)   (.073)  (.071) 

 − .152 y78 ⋅ educ − .098 y80 ⋅ educ − .139 y82 ⋅ educ − .176 y84 ⋅ educ. 
  (.075)    (.070)  (.068)  (.070) 
 

Three of the interaction terms, y78 ⋅ educ, y82 ⋅ educ, and y84 ⋅ educ are statistically significant at 
the 5% level against a two-sided alternative, with the p-value on the latter being about .012.  The 
coefficients are large in magnitude as well.  The coefficient on educ – which is for the base year, 
1972 – is small and insignificant, suggesting little if any relationship between fertility and 
education in the early seventies.  The estimates above are consistent with fertility becoming more 
linked to education as the years pass.  The F statistic is insignificant because we are testing some 
insignificant coefficients along with some significant ones. 
 
C13.3 (i) Other things equal, homes farther from the incinerator should be worth more, so δ1 > 0.  
If β1 > 0, then the incinerator was located farther away from more expensive homes. 
 
 (ii) The estimated equation is 
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 nlog( )price  = 8.06 − .011 y81 + .317 log(dist) + .048 y81 ⋅ log(dist) 
   (0.51)  (.805)  (.052)  (.082) 

 n  =  321,   R2  =  .396,   2R  = .390. 
 
While 1̂δ  = .048 is the expected sign, it is not statistically significant (t statistic ≈ .59). 
 
 (iii) When we add the list of housing characteristics to the regression, the coefficient on 
y81 ⋅ log(dist) becomes .062 (se = .050).  So the estimated effect is larger – the elasticity of price 
with respect to dist is .062 after the incinerator site was chosen – but its t statistic is only 1.24.  
The p-value for the one-sided alternative H1: δ1 > 0 is about .108, which is close to being 
significant at the 10% level. 
 
C13.5 (i) Using pooled OLS we obtain  
 
 nlog( )rent  = −.569 + .262 d90 + .041 log(pop) + .571 log(avginc) +  .0050 pctstu 
     (.535)  (.035)  (.023)  (.053)  (.0010) 

 n  =  128,   R2  =  .861. 
 
The positive and very significant coefficient on d90 simply means that, other things in the 
equation fixed, nominal rents grew by over 26% over the 10 year period.  The coefficient on 
pctstu means that a one percentage point increase in pctstu increases rent by half a percent (.5%).  
The t statistic of five shows that, at least based on the usual analysis, pctstu is very statistically 
significant. 
 
 (ii) The standard errors from part (i) are not valid, unless we thing ai does not really appear in 
the equation.  If ai is in the error term, the errors across the two time periods for each city are 
positively correlated, and this invalidates the usual OLS standard errors and t statistics. 
 
 (iii) The equation estimated in differences is 
 
 nlog( )rentΔ  = .386 + .072 Δlog(pop) + .310 log(avginc) +  .0112 Δpctstu 
    (.037)  (.088)  (.066)  (.0041) 

 n  =  64,   R2  =  .322. 
 
Interestingly, the effect of pctstu is over twice as large as we estimated in the pooled OLS 
equation.  Now, a one percentage point increase in pctstu is estimated to increase rental rates by 
about 1.1%.  Not surprisingly, we obtain a much less precise estimate when we difference 
(although the OLS standard errors from part (i) are likely to be much too small because of the 
positive serial correlation in the errors within each city).  While we have differenced away ai, 
there may be other unobservables that change over time and are correlated with Δpctstu. 
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 (iv) The heteroskedasticity-robust standard error on Δpctstu is about .0028, which is actually 
much smaller than the usual OLS standard error.  This only makes pctstu even more significant 
(robust t statistic ≈ 4).  Note that serial correlation is no longer an issue because we have no time 
component in the first-differenced equation. 
 
C13.7 (i) Pooling across semesters and using OLS gives 
 
 ntrmgpa  = −1.75 − .058 spring + .00170 sat − .0087 hsperc 
   (0.35)  (.048)  (.00015)  (.0010) 

  + .350 female − .254 black − .023 white − .035 frstsem 
   (.052)  (.123)  (.117)  (.076) 

  − .00034 tothrs + 1.048 crsgpa − .027 season 
   (.00073)  (0.104)    (.049) 

 n  =  732,   R2  =  .478,   2R  = .470. 
 
The coefficient on season implies that, other things fixed, an athlete’s term GPA is about .027 
points lower when his/her sport is in season.  On a four point scale, this a modest effect (although 
it accumulates over four years of athletic eligibility).  However, the estimate is not statistically 
significant (t statistic ≈ −.55). 
 
 (ii) The quick answer is that if omitted ability is correlated with season then, as we know 
form Chapters 3 and 5, OLS is biased and inconsistent.  The fact that we are pooling across two 
semesters does not change that basic point. 
 If we think harder, the direction of the bias is not clear, and this is where pooling across 
semesters plays a role.  First, suppose we used only the fall term, when football is in season.  
Then the error term and season would be negatively correlated, which produces a downward bias 
in the OLS estimator of βseason.  Because βseason is hypothesized to be negative, an OLS regression 
using only the fall data produces a downward biased estimator.  [When just the fall data are used, 
ˆ

seasonβ  = −.116 (se = .084), which is in the direction of more bias.]  However, if we use just the 
spring semester, the bias is in the opposite direction because ability and season would be positive 
correlated (more academically able athletes are in season in the spring).  In fact, using just the 
spring semester gives ˆ

seasonβ  = .00089 (se = .06480), which is practically and statistically equal 
to zero.  When we pool the two semesters we cannot, with a much more detailed analysis, 
determine which bias will dominate. 
 
 (iii) The variables sat, hsperc, female, black, and white all drop out because they do not vary 
by semester.  The intercept in the first-differenced equation is the intercept for the spring.  We 
have 
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 ntrmgpaΔ  = −.237 + .019 Δfrstsem + .012 Δtothrs + 1.136 Δcrsgpa − .065 season 
   (.206)  (.069)  (.014)  (0.119)  (.043) 

 n  =  366,   R2  =  .208,   2R  = .199. 
 
Interestingly, the in-season effect is larger now:  term GPA is estimated to be about .065 points 
lower in a semester that the sport is in-season.  The t statistic is about –1.51, which gives a one-
sided p-value of about .065. 
 
 (iv) One possibility is a measure of course load.  If some fraction of student-athletes take a 
lighter load during the season (for those sports that have a true season), then term GPAs may 
tend to be higher, other things equal.  This would bias the results away from finding an effect of 
season on term GPA. 
 
C13.9 (i) When we add the changes of the nine log wage variables to equation (13.33) we obtain 
 
 nlog( )crmrteΔ  = .020 − .111 d83 − .037 d84 − .0006 d85 + .031 d86 + .039 d87  
   (.021)  (.027)  (.025)  (.0241)  (.025)  (.025) 

  − .323 Δlog(prbarr) − .240 Δlog(prbconv) − .169 Δlog(prbpris) 
   (.030)  (.018)  (.026) 

  − .016 Δlog(avgsen) + .398 Δlog(polpc) − .044 Δlog(wcon)  
   (.022)  (.027)  (.030) 

  + .025 Δlog(wtuc)  − .029 Δlog(wtrd) + .0091 Δlog(wfir)     
   (0.14)  (.031)  (.0212) 

  + .022 Δlog(wser) − .140 Δlog(wmfg) − .017 Δlog(wfed) 
   (.014)  (.102)  (.172) 

  − .052 Δlog(wsta) − .031 Δlog(wloc) 
   (.096)  (.102) 

 n  =  540,   R2  =  .445,   2R  = .424. 
 
The coefficients on the criminal justice variables change very modestly, and the statistical 
significance of each variable is also essentially unaffected. 
 
 (ii) Since some signs are positive and others are negative, they cannot all really have the 
expected sign.  For example, why is the coefficient on the wage for transportation, utilities, and 
communications (wtuc) positive and marginally significant (t statistic ≈ 1.79)?  Higher 
manufacturing wages lead to lower crime, as we might expect, but, while the estimated 
coefficient is by far the largest in magnitude, it is not statistically different from zero (t 
statistic ≈ –1.37).  The F test for joint significance of the wage variables, with 9 and 529 df, 
yields F ≈ 1.25 and p-value ≈ .26. 



 

 
This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, 

or distributed without the prior consent of the publisher. 
 

76

 
C13.11 (i) Take changes as usual, holding the other variables fixed: Δmath4it = β1Δlog(rexppit) = 
(β1/100)⋅[ 100⋅Δlog(rexppit)] ≈ (β1/100)⋅( %Δrexppit).  So, if %Δrexppit = 10, then Δmath4it = 
(β1/100)⋅(10) = β1/10. 
 
 (ii) The equation, estimated by pooled OLS in first differences (except for the year 
dummies), is  
 
 n4mathΔ   =  5.95  +   .52 y94  +  6.81 y95   −   5.23 y96   −   8.49 y97   +   8.97 y98 
  (.52) (.73) (.78) (.73) (.72) (.72) 
 
  −  3.45 Δlog(rexpp)  +  .635 Δlog(enroll)    +   .025 Δlunch 
  (2.76) (1.029) (.055) 
 
 n  =  3,300,   R2  =  .208. 
 
Taken literally, the spending coefficient implies that a 10% increase in real spending per pupil 
decreases the math4 pass rate by about 3.45/10 ≈ .35 percentage points. 
 
 (iii) When we add the lagged spending change, and drop another year, we get  
 
 n4mathΔ   =  6.16  +  5.70 y95   −  6.80 y96   −   8.99 y97   +   8.45 y98 
  (.55) (.77) (.79) (.74) (.74) 
 
  −  1.41 Δlog(rexpp)  + 11.04 Δlog(rexpp-1)   + 2.14 Δlog(enroll)   
    (3.04) (2.79) (1.18) 
 
  +   .073 Δlunch 
   (.061) 
 
 n  =  2,750,   R2  =  .238. 
 
The contemporaneous spending variable, while still having a negative coefficient, is not at all 
statistically significant.  The coefficient on the lagged spending variable is very statistically 
significant, and implies that a 10% increase in spending last year increases the math4 pass rate 
by about 1.1 percentage points.  Given the timing of the tests, a lagged effect is not surprising.  
In Michigan, the fourth grade math test is given in January, and so if preparation for the test 
begins a full year in advance, spending when the students are in third grade would at least partly 
matter. 
 
 (iv) The heteroskedasticity-robust standard error for log( )   

ˆ
rexppβΔ is about 4.28, which reduces 

the significance of Δlog(rexpp) even further.  The heteroskedasticity-robust standard error of 
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1log( )   
ˆ

rexppβ
−Δ is about 4.38, which substantially lowers the t statistic.  Still, Δlog(rexpp-1) is 

statistically significant at just over the 1% significance level against a two-sided alternative. 
 
 (v) The fully robust standard error for log( )   

ˆ
rexppβΔ is about 4.94, which even further reduces 

the t statistic for Δlog(rexpp).  The fully robust standard error for 
1log( )   

ˆ
rexppβ

−Δ is about 5.13, 
which gives Δlog(rexpp-1) a t  statistic of about 2.15.  The two-sided p-value is about .032. 
 
 (vi) We can use four years of data for this test.  Doing a pooled OLS regression of , 1ˆ ˆon it i tr r − , 
using years 1995, 1996, 1997, and 1998 gives ρ̂ =  −.423 (se = .019), which is strong negative 
serial correlation. 
 
 (vii) The fully robust “F” test for Δlog(enroll) and Δlunch, reported by Stata 7.0, is .93.  With 
2 and 549 df, this translates into p-value = .40.  So we would be justified in dropping these 
variables, but they are not doing any harm. 
 
C13.13 (i) We can estimate all parameters except 0β  and 1β : the intercept for the base year 
cannot be estimated, and neither can coefficients on the time-constant variable educi.  
 
 (ii) We want to test 0 1 2 7: ,..., 0H γ γ γ= = , so there are seven restrictions to be tested. Using 
FD (which eliminates educi) and obtaining the F statistic gives F = .31 (p-value = .952). 
Therefore, there is no evidence that the return to education varied over this time period. (Also, 
each coefficient is individuall statistically insignificant at the 25% level.) 
 
 (iii) The fully robust F statistic is about 1.00, with p-value = .432. So the conclusion really 
does not change: the jγ  are jointly insignificant. 
 
 (iv) The estimated union differential in 1980 is simply the coefficient on itunionΔ , or about 
.106 (10.6%). For 1987, we add the coefficients on tunionΔ  and 87t itd unionΔ ⋅ , or  −.041 
(−4.1%). The difference, −14.7%, is statistically significant (t = −2.15, whether we use the usual 
pooled OLS standard error or the fully robust one). 
 
 (v) The usual F statistic is 1.03 (p-value = .405) and the statistic robust to heteroskedasticity 
and serial correlation is 1.15 (p-value = .331). Therefore, when we test all interaction terms as a 
group (seven of them), we fail to reject the null that the union differential was constant over this 
period. Most of the interactions are individually insignificant; in fact, only those for 1986 and 
1987 are close. We can get joint insignificance by lumping several statistically insignificant 
variables in with one or two statistically significant ones. But it is hard to ignore the practically 
large change from 1980 to 1987. (There might be a problem in this example with the strict 
exogeneity assumption: perhaps union membership next year depends on unexpected wage 
changes this year.) 


